References

01 - Transitioning towards sustainability

  • United Nations Climate Change, The Paris Agreement LINK accessed 18/02/2022
  • COP 26 United Nations Climate Change Conference UK 2021  LINK accessed 18/02/2022
  • United Nations Climate Change, The Glasgow Climate Pact – Key Outcomes from COP26 LINK accessed 18/12/2022
  • IEA International Energy Agency, Tracking Clean Energy Progress Assessing critical energy technologies for global clean energy transitions LINK accessed 18/02/2022
  • IEA (2021) Net Zero by 2050 A Roadmap for the Global Energy Sector LINK accessed 18/02/2022
  • IPCC Intergovernmental Panel on Climate Change (1990) Climate Change: The IPCC Scientific Assessment LINK accessed 18/02/2022
  • IPCC Intergovernmental Panel on Climate Change LINK accessed 18/02/2022
  • United Nations, United Nations Conference on Environment and Development, Rio de Janeiro, Brazil, 3-14 June 1992 LINK accessed 20/06/2022
  • United Nations Climate Change, Bonn Climate Change Conference – June 2022 LINK accessed 18/02/2022
  • United Nations Climate Change, What is the Kyoto Protocol? LINK accessed 20/06/2022
  • United Nations Climate Change, The Doha AmendmentLINK accessed 20/06/2022
  • IPCC (2022) AR6 Synthesis Report: Climate Change 2022 LINK accessed 20/06/2022
  • United Nations, United Nations Conference on Environment and Development, Rio de Janeiro, Brazil, 3-14 June 1992 LINK accessed 18/02/2022
  • IPCC (2022) Climate Change 2022 – Mitigation of Climate Change LINK accessed 20/06/2022
  • IPCC (2018) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla,A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press. LINK accessed 18/02/2022
  • IPCC (2019) Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson- Delmotte, H.- O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press. LINK accessed 18/02/2022
  • United Nations, United Nations Conference on the Human Environment, 5-16 June 1972, Stockholm LINK accessed 18/02/2022
  • United Nations Department of Economic and Social Affairs Sustainable Development, Sustainable development goals LINK accessed 18/02/2022
  • Material Economics (2021) EU BiomassUse In A Net-Zero Economy – A CourseCorrection for EU Biomass. LINK accessed 18/02/2022
  • Frisvold GB, Moss SM et al. (2021)Understanding the U.S. Bioeconomy: A New Definition and Landscape. Sustainability, 13(4), 1627 LINK
  • IEA Bioenergy Task 42 LINK accessed 20/06/2022
  • IEA, Renewables LINK accessed 18/02/2022
  • IEA, Solar LINK accessed 20/06/2022
  • IEA, World Energy Outlook 2021 LINK accessed 20/06/2022
  • IEA, World Energy Outlook (2021) Fuels: old and new LINK accessed 18/02/2022
  • IEA (2019) The Future of HydrogenSeizing today’s opportunities LINK accessed 20/06/2022
  • IEA Bioenergy (2016) Developing the Global Bioeconomy Technical, Market, and Environmental Lessons from Bioenergy LINK
  • IEA Bioenergy Task 44 (2021) Technologies for Flexible Bioenergy LINK accessed 18/02/2022
  • EA Bioenergy Task 44 (2021) Five Cornerstones to Unlock the Potential of Flexible Bioenergy LINK accessed 18/02/2022
  • Project GAIA Energy Revolution LINK accessed 18/02/2022
  • United Nations Department of Economic and Social Affairs Sustainable Development, SDG Goal 7 Ensure access to affordable, reliable, sustainable and modern energy for all LINK accessed 18/02/2022

02 - Environmental Sustainability

  • IEA Bioenergy (2018) Is energy from woody biomass positive for the climate? LINK accessed 20/06/2022
  • IEA, Global Energy Review 2021. Greenhouse Gas Emissions from Energy: Overview, Global GHG emissions LINK accessed 18/02/2022
  • IEA, Global Energy Review 2021: CO2 Emissions in 2021 LINK
  • IEA, Greenhouse Gas Emissions from Energy: Overview, Emissions by sector LINK accessed 18/02/2022
  • IEA (2021) Net Zero by 2050 A Roadmap for the Global Energy Sector LINK accessed 18/02/2022
  • IRENA (2019), Bioenergy from boreal forests – Swedish approach to sustainable wood use LINK accessed 02/12/2022

  • Tripathi N, Hills CD et al. (2019) Biomass waste utilisation in low-carbon products: harnessing a major potential resource npj Climate and Atmospheric Science 2, 35 IEA Bioenergy LINK accessed 18/02/2022
  • IEA Bioenergy LINK accessed 18/02/2022
  • Göransson L Johnsson F (2018) A comparison of variation management strategies for wind power integration in different electricity system contexts. Wind Energy, 21, 837– 854 LINK
  • Cowie A, Berndes G et al. (2021) Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy. Global Change Biology-Bioenergy. 13,1210–1231 LINK
  • Swedish Forest Agency (2021) Sustainable boreal forest management – challenges and opportunities for climate change mitigation LINK
  • IEA Bioenergy (2021), Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy LINK accessed 20/06/2022
  • IPCC AR6 WG1. Climate Change 2021: The Physical Science Basis. Full report, chapter 5. LINK
  • PBL Netherlands Environmental Assessment Agency (2017) Exploring future changes in land use and land condition and the impacts on food, water, climate change and biodiversity – Scenarios for the UNCCD Global Land Outlook LINK accessed 18/02/2022

  • European Parliament Directorate-General for Internal Policies, Policy Department A: Economic and Scientific Policy (2011) Indirect Land Use Change and Biofuels LINK accessed 18/02/2022

  • International Institute for Applied Systems Analysis (IAASA) and Food and Agriculture Organization of the United Nations (FAO) GAEZ v3.0 Global Agroecological Zones LINK accessed 20/06/2022

  • FAO, BEFS Assessment LINK accessed 20/06/2022

  • IEA (2021) Net Zero by 2050 A Roadmap for the Global Energy Sector LINK accessed 18/02/2022

  • Dasgupta P (2021) The Economics of Biodiversity: The Dasgupta Review, London: HM Treasury  LINK accessed 20/06/2022

  • Englund O, Börjesson P et al. (2020) Beneficial land use change: Strategic expansion of new biomass plantations can reduce environmental impacts from EU agriculture. Global Environmental Change 60: 101990 LINK
  • Englund O, Börjesson P et al. (2021) Strategic deployment of riparian buffers and windbreaks in Europe can co-deliver biomass and environmental benefits. Communications Earth & Environment 2: 176  LINK
  • Kline KL, Msangi S et al. (2017) Reconciling food security and bioenergy: priorities for action. Global Change Biology Bioenergy 9(3):557-576. LINK
  • IEA Bioenergy Task 43 (2019) Attractive Systems for Bioenergy Feedstock Production in Sustainably Managed Landscapes LINK
  • Oladosu GA, Kline KL et al. (2021) Structural break and causal analyses of U.S. Corn use for ethanol and other corn market variables. Agriculture 11(3), 267 LINK
  • PBL Netherlands Environmental Assessment Agency (2017) Exploring future changes in land use and land condition and the impacts on food, water, climate change and biodiversity – Scenarios for the UNCCD Global Land Outlook LINK accessed 18/02/2022
  • Sandstad Næss J, Cavalett, O et al. (2021) The land-energy-water nexus of global bioenergy potentials from abandoned cropland. Nature Sustainability 4,525–536 LINK
  • Vera I, Hoefnagels R et al. (2021) Supply potential of lignocellulosic energy crops grown on marginal land and greenhouse gas footprint of advanced biofuels – A spatially explicit assessment under the sustainability criteria of the Renewable Energy Directive Recast. GCB Bioenergy 13(9) 1425-1447 LINK
  • Vural Gursel l, Quist-Wessel F et al. (2021) Variable demand as a means to more sustainable biofuels and biobased materials Biofuels, Bioproducts & Biorefining 15, 15–31 LINK
  • IEA Bioenergy (2008) The Availability of Biomass Resources for Energy – Summary and Conclusions from the IEA Bioenergy ExCo58 Workshop LINK accessed 18/02/2022
  • IRENA, IEA Bioenergy, FAO (2017). Bioenergy for Sustainable Development LINK accessed 18/02/2022
  • European Parliament (2011) Indirect Land Use Change and Biofuels LINK accessed 05/07/2022
  • United Nations Environment Programme (UNEP), Oeko-Institut and IEA Bioenergy Task 43 (2011) The bioenergy and water nexus LINK
  • Gerbens-Leenes PW (2018) Green, Blue and Grey Bioenergy Water Footprints, a Comparison of Feedstocks for Bioenergy Supply in 2040, Environmental Processes 5, 167–180 LINK
  • Global Bioenergy Partnership and IEA Bioenergy Report Examples of Positive Bioenergy and Water Relationships (2016) LINK
  • Wageningen University & Research, BioESoil LINK accessed 20/06/2022
  • Rodias E, Eirini Aivazidou E et al. (2021) Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework, Energies, 14(1), 159 LINK
  • Masters MD, Black CK et al. (2016) Soil nutrient removal by four potential bioenergy crops: Zea mays, Panicum virgatum, MiscanthusÅ~giganteus, and prairie, Agriculture, Ecosystems & Environment (216) 51-60 LINK
  • Mosier S, Córdova SC at al. (2021) Restoring Soil Fertility on Degraded Lands to Meet Food, Fuel, and Climate Security Needs via Perennialization, Frontiers in Sustainable Food System, 11 LINK
  • Kluts I, Wicke B et al. (2017). Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward. Renewable and Sustainable Energy Reviews, 69, 719–734. LINK
  • Roundtable on Sustainable Biomass (RSB) LINK accessed 20/06/2022
  • International Sustainability & Carbon certification (ISCC) LINK accessed 20/06/2022
  • Sustainable Biomass Program (SBP), LINK accessed 20/06/2022
  • BonSucro, Global sustainability platform for sugarcane LINK accessed 20/06/2022
  • Roundtable on Sustainable Palm Oil (RSPO) LINK accessed 20/06/2022
  • Hansson J, Berndes G et al. (2019) How is biodiversity protection influencing the potential for bioenergy feedstock production on grasslands? GCB Bioenergy 11,517–538 LINK
  • Hennenberg KJ, Fritsche UR et al. (2009) Practical Implementation of BioSt- NachV – Sub-project Area related Requirements (Art. 4–7 + 10) – Specifications and recommendations for “grassland” area type (Final draft) LINK accessed 18/02/2022
  • Slade R, Bauen A et al. (2014) Global bioenergy resources. Nature Climate Change, 4, 99–105. LINK
  • Blair MJ, Gagnon B et al. (2021) Contribution of Biomass Supply Chains for Bioenergy to Sustainable Development Goals. Land, 10, 181 LINK

03 - Economic considerations

  • Offermann R, Seidenberger T et al. (2011) Assessment of global bioenergy potentials. Mitigation and Adaptation Strategies for Global Change 16, 103–115 LINK
  • Searle S, Malins C (2015) A reassessment of global bioenergy potential in 2050. GCB Bioenergy 7, 328–336, LINK
  • REN 21, Renewables 2020 global status report LINK accessed 18/02/2022
  • IEA, Breakdown of global bioenergy demand in the Stated Policies Scenario, 2010-2040 LINK
  • IEA (2021) Net Zero by 2050 – A Roadmap for the Global Energy Sector LINK accessed 18/02/2022
  • IEA Bioenergy Task 43 (2018) Innovative approaches for mobilization of forest biomass for bioenergy LINK accessed 18/02/2022
  • EU Science Hub, The European Commission’s science and knowledge service (2020) Algae biomass production for the bioeconomy LINK
  • Tattersall Smith C, Lattimore B, et al. (2017) Opportunities to encourage mobilization of sustainable bioenergy supply chains WIREs Energy and Environment, 6:e237. LINK
  • IEA Bioenergy Task 43 (2017 ) Mobilisation of agricultural residues for bioenergy and higher value bio-products: resources, barriers and sustainability LINK accessed 20/06/2022
  • IEA Bioenergy Task 43 (2019) Bio-hubs as keys to successful biomass supply integration for bioenergy within the bioeconomy LINK accessed 18/02/2022
  • IEA Bioenergy (2019) Fuel treatment of biomass residues in the supply chain for thermal conversion LINK accessed 18/02/2022
  • Gadde B, Bonnet S et al. (2009) Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines, Environmental Pollution 157 1554–1558 LINK
  • Kim Oanh NT, Tipayarom A et al. (2015) Characterization of gaseous and semivolatile organic compounds emitted from field burning of rice straw, Atmospheric Environment,119, 182-191, LINK
  • Sillapapiromsuk S, Chantara S et al. (2013) Determination of PM10 and its ion composition emitted from biomass burning in the chamber for estimation of open burning emissions, Chemosphere, 93, 9, 1912-1919 LINK
  • IEA Bioenergy Task 36 (2021) Transitioning towards a decarbonised circular economy: Focus on Waste to Energy LINK
  • Vis M, Mantau U, Allen B (Eds.) (2016) Study on the optimised cascading use of wood. No 394/PP/ENT/RCH/14/7689. Final report. Brussels 2016. 337 pages LINK accessed 18/02/2022
  • IEA Bioenergy Task 36 (2020) Trends in the use of solid recovered fuels. LINK accessed 18/02/2022
  • IEA Bioenergy Task 36 (2019) Nutrient recovery from Waste. LINK accessed 18/02/2022
  • IEA Bioenergy Task 36 LINK accessed 18/02/2022
  • IEA Bioenergy Task 32 (2019) Best practice report on decentralized biomass fired CHP plants and status of biomass fired small- and micro scale CHP technologies.LINK accessed 18/02/2022
  • Nussbaumer T, Thalmann S, prepared for IEA Bioenergy Task 32 (2014) Status Report on District Heating Systems in IEA Countries LINK accessed 18/02/2022
  • IEA Bioenergy Task 37, Energy from Biogas LINK accessed 20/06/2022
  • IEA Bioenergy Task 36 (2019). Biomass pre-treatment for bioenergy. Case study 3: MSW pre-treatment for gasification LINK accessed 20/06/2022
  • IEA Bioenergy Task 33 Projects LINK accessed 18/02/2022
  • IEA Bioenergy Task 34, Pyrolysis Principles LINK accessed 18/02/2022
  • IEA Bioenergy Task 34, Solvent liquefaction LINK accessed 18/02/2022
  • IEA (2021) Net Zero by 2050 – A Roadmap for the Global Energy Sector LINK accessed 18/02/2022
  • Gadde B, Bonnet S et al. (2009) Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines, Environmental Pollution 157 1554–1558 LINK
  • FAOSTAT LINK accessed 18/02/2022
  • IEA Bioenergy, Annual Report 2020 LINK accessed 18/02/2022
  • Fuhrmann M, Dißauer C, et al. (2021) Analysing price cointegration of sawmill by-products in the forest-based sector in Austria. Forest Policy and Economics 131, 102560, LINK
  • Kristöfel C, Strasser C et al. (2014) Analysis of woody biomass commodity price volatility in Austria, Biomass and Bioenergy 65, 112-124 LINK
  • Brosowski A, Thrän D et al. (2016) A review of biomass potential and current utilisation – St atus quo f or 93 biog enic wastes and residues in Germany. Biomass and Bioenergy 95, 257-272 LINK

04 - Reaping the multiple benefits of bioenergy

  • Gadde B, Bonnet S et al. (2009) Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines, Environmental Pollution 157 1554–1558 LINK
  • Environment & Society Portal LINK accessed 18/02/2022
  • Report of the World Commission on Environment and Development: Our Common Future From One Earth to One World LINK accessed 18/02/2022
  • United Nations Department of Economic and Social Affairs Sustainable Development, Sustainable development goals LINK
  • Giddings B, Hopwood B et al. (2002) Environment, economy and society: fitting them together into sustainable development. Sustainable Development 10, 187-196 LINK
  • University of California, Los Angeles, What is Sustainability? LINK accessed 18/02/2022
  • The Pennsylvania State University, Reevaluating the Sustainability Triad  LINK  accessed 18/02/2022
  • The Pennsylvania State University, Natural Limits and Conditions of Sustainability LINK accessed 18/02/2022
  • UNEP (2015) Sustainable Consumption and Production A Handbook for Policymakers LINK accessed 18/02/2022
  • United Nations Department of Economic and Social Affairs Sustainable Development (2015) Transforming our world: the 2030 Agenda for Sustainable Development LINK accessed 18/02/2022
  • IEA Bioenergy (2019) Governing sustainability in biomass supply chains for the bioeconomy – Summary and conclusions from the IEA Bioenergy workshop, Utrecht (Netherlands), 23 May 2019. LINK
  • UNIDO, United Nations Industrial Development Organization (2021) The role of bioenergy in the clean energy transition and sustainable development lessons from developing countries LINK accessed 18/02/2022
  • United Nations Department of Economic and Social Affairs Sustainable Development, The 17 goals LINK accessed 18/02/2022
  • IEA Bioenergy (2021) Biomass Supply and the Sustainable Development Goals. International case studies. LINK accessed 18/02/2022
  • Smith P, Adams J et al. (2019) Land- Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annual Review of Environment and Resources 44 (1): 255-286.LINK accessed 21/06/2022

05 - Reaping the multiple benefits of bioenergy

  • United Nations Climate Change, The Paris Agreement LINK accessed 18/02/2022
  • IPCC (2018) Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla,A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis,E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press.LINK accessed 18/02/2022
  • Climate Action Tracker LINK accessed 18/02/2022
  • Minx JC, Lamb WF et al. (2017) Negative emissions: Part 1 – research landscape and synthesis. Environmental Research Letters 13,063001. LINK
  • IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp LINK accessed 21/06/2022)
  • IRENA (2021) Reaching zero with renewables, Capturing Carbon, Technical Paper 4/2021 LINK accessed 21/06/2022
  • Grubler A, Wilson C et al. (2018) A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nature Energy 3, 515–527 LINK
  • Fuss S, Lamb WF et al. (2018) Negative emissions – Part 2: Costs, potentials and side effects. Environmental Research Letters 13, 063002.LINK
  • Jackson RB, Abernethy S et al. (2021) Atmospheric methane removal: a research agenda. Philosophical Transaction of the Royal Society A 379: 20200454. LINK
  • Fuss S, Canadell JGet al. (2020). Moving toward Net-Zero Emissions Requires New Alliances for Carbon Dioxide Removal. One Earth 3(2),145-149. LINK
  • IPCC (2021): Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K.Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. In Press. LINK accessed 18/02/2022
  • IEA Bioenergy Task 40 (2019) Margin potential for a long-term sustainable wood pellet supply chain LINK accessed 18/02/2022
  • IEA Bioenergy Task 40 (2017) Global Wood Pellet Industry and Trade Study 2017 LINK accessed 18/02/2022
  • Schipfer F, Kranzl L et al. (2017) Advanced biomaterials scenarios for the EU28 up to 2050 and their respective biomass demand. Biomass and Bioenergy 96,19-27 UNEP (2022 Fifth session of the United Nations Environment Assembly LINK accessed 22/06/2022
  • UNEP (2022 Fifth session of the United Nations Environment Assembly LINK accessed 22/06/2022
  • IEA Bioenergy Task 42 (2012) Bio-based Chemicals: Value Added Products from Biorefineries LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 (2020) Bio-Based Chemicals A 2020 Update LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 (2016) Cascading of woody biomass: definitions, policies and effects on international trade” LINK accessed 18/02/2022
  • IEA Bioenergy (2016) Developing the Global Bioeconomy Technical, Market, and Environmental Lessons from Bioenerg LINK
  • IEA Bioenergy Task 42 (2017) Wageningen University & Research Report: Small-scale biorefining LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 (2017) Wageningen University & Research Report: Small-scale biorefining  LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 (2020) Technical, Economic and Environmental Assessment of Biorefinery Concepts Developing a practical approach for characterization LINK accessed 18/02/2022
  • Sikkema R, Dallemand JF (2016) How can the ambitious goals for the EU’s future bioeconomy be supported by sustainable and efficient wood sourcing practices? Scandinavian Journal of Forest Research 32:7, 551-558 LINK
  • IEA Bioenergy Task 44 (2021) Technologies for Flexible Bioenergy,LINK accessed 18/02/2022
  • Dotzauer M, Oehmichen K et al. (2022) Empirical greenhouse gas assessment for flexible bioenergy in interaction with the German power sector, Renewable Energy, 181, 1100-1109, LINK
  • IEA Bioenergy Task 44 (2021) Expectation and implementation of flexible bioenergy in different countriesLINK accessed 18/02/2022
  • IEA Bioenergy Task 44, Best PracticesLINK accessed 22/06/2022
  • IEA Bioenergy Task 44 Report (2021) Lange, N. Five Cornerstones to Unlock the Potential of Flexible Bioenergy. 2021, 8.LINK accessed 22/06/2022
  • High-temperature industrial heat IEA (2021) Tracking Industry 2021,LINK accessed 22/06/2022
  • IEA Bioenergy (2020). Bioenergy for High Temperature Heat in Industry (2020) Case Study 5: Wood chips combustion for process steam in a potato processing industry LINK accessed 18/02/2022
  • IEA Bioenergy (2020). Bioenergy for High Temperature Heat in Industry (2020) Case Study 2: Gasification of paper reject to displace natural gas usage in a pulp and paper processLINK accessed 18/02/2022
  • IEA Bioenergy (2020). Bioenergy for High Temperature Heat in Industry (2020) Case Study 3: Process steam in a dairy factory via fast pyrolysis bio-oilLINK accessed 18/02/2022
  • IEA Bioenergy (2020). Bioenergy for High Temperature Heat in Industry (2020) Case Study 4: Waste-to-Energy for the production of steam for paper productionLINK accessed 18/02/2022
  • IEA Bioenergy (2020). Bioenergy for High Temperature Heat in Industry (2020) Case Study 5: Combustion of wood chips and grain residues for process heat supply in the largest bakery in Switzerland (2021)LINK accessed 18/02/2022
  • IEA Bioenergy (2020). Bioenergy for High Temperature Heat in Industry (2021) Decarbonizing industrial process heat: the role of biomassLINK accessed 22/06/2022
  • IEA (2021) Tracking Industry 2021,LINK accessed 22/06/2022
  • IEA Bioenergy (2020). Bioenergy for High Temperature Heat in Industry (2020) Case Study 5: Wood chips combustion for process steam in a potato processing industryLINK accessed 18/02/2022
  • IEA Bioenergy (2020). Bioenergy for High Temperature Heat in Industry (2020) Case Study 2: Gasification of paper reject to displace natural gas usage in a pulp and paper processLINK accessed 18/02/2022
  • IEA Bioenergy (2020). Bioenergy for High Temperature Heat in Industry (2020) Case Study 3: Process steam in a dairy factory via fast pyrolysis bio-oilLINK accessed 18/02/2022
  • IEA Bioenergy (2020). Bioenergy for High Temperature Heat in Industry (2020) Case Study 4: Waste-to-Energy for the production of steam for paper productionLINK accessed 18/02/2022
  • IEA Bioenergy (2020). Bioenergy for High Temperature Heat in Industry (2020) Case Study 5: Combustion of wood chips and grain residues for process heat supply in the largest bakery in Switzerland (2021) LINK accessed 18/02/2022
  • IEA Bioenergy (2020). Bioenergy for High Temperature Heat in Industry (2021) Decarbonizing industrial process heat: the role of biomassLINK accessed 22/06/2022
  • IEA (2021) Net Zero by 2050 – A Roadmap for the Global Energy SectorLINK accessed 18/02/2022
  • International Transport Forum, Decarbonising Air Transport – Acting Now for the Future International Transport Forum Policy Papers, No. 94, OECD Publishing, ParisLINK accessed 18/02/2022
  • Airport Use of Sustainable Aviation Fuel MapLINK accessed 18/02/2022
  • ICAO Environment, Offtake AgreementsLINK accessed 18/02/2022
  • IMO International Maritime Organization 2020 – cutting sulphur oxide emissionsLINK accessed 18/02/2022
  • Maersk eyes ‘leapfrog’ to carbon neutral fuels in shippingLINK accessed 18/02/2022
  • IEA Report (2017) The Future of Trucks LINK accessed 18/02/2022
  • STATISTA (2022 Projected fuel cell electric vehicle deployment worldwide between 2020 and 2030LINK accessed 18/02/2022

06 - Enabling policies and research needs

  • IEA Bioenergy Task 42 (2018) Bioeconomy and biorefining strategies in the EU Member States and beyond LINK accessed 18/02/2022
  • Annevelink B (2018) The IEA Bioenergy Task 42 Perspective for Biorefining in a Growing Bioeconomy LINK accessed 18/02/2022
  • European Commission (2020) Draft proposal for a European Partnership under Horizon Europe European Partnership for a Circular bio-based Europe: sustainable innovation for new local value from biowaste and biomass (CBE) LINK accessed 18/02/2022
  • Stockholm Environment Institute (SEI) (2020) LINK accessed 22/06/2022
  • Milios (2018) Advancing to a Circular Economy: three essential ingredients for a comprehensive policy mix, Sustainability Science 13, 861–878 LINK
  • Schipfer F, Pfeiffer A et al. (2022 Strategies for the Mobilization and Deployment of Local Low-Value, Heterogeneous Biomass Resources for a Circular Bioeconomy Energies 15(2), 433; LINK
  • IEA Bioenergy Task 40 (2019) Projects 2019-2021 LINK accessed 22/06/2022
  • IEA Bioenergy Task 42 Report (2020) Bio- Based Chemicals – A 2020 Update LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 (2016) Proteins for Food, Feed and Biobased Applications: Biorefining of protein containing biomass LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 (2018) Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 (2019) Technical, Economic and Environmental Assessment of Biorefinery Concepts: Developing a practical approach for characterization LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 Report (2018) Standards and Labels related to Biobased Products LINK accessed 18/02/2022
  • Star ProBio Project Sustainability Transition Assessment and Research of Bio-based Products LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 (2017) Wageningen University & Research Report: Small-scale biorefining LINK accessed 18/02/2022
  • Schipfer F, Pfeiffer A et al. (2022) Strategies for the Mobilization and Deployment of Local Low-Value, Heterogeneous Biomass Resources for a Circular Bioeconomy. Energies 15 (2), 433. LINK
  • IEA Bioenergy Task 42 (2012) The potential role of biofuels in commercial air transport – biojetfuel LINK accessed 18/02/2022
  • Iriarte L, Fritsche UR (2021) Sustainability governance of bioenergy and the broader bioeconomy LINK accessed 22/06/2022
  • IEA Bioenergy (2019) Biomass pre- treatment for bioenergy – Policy report LINK accessed 18/02/2022
  • IEA Bioenergy Task 40 (2015) Possible effects of torrefaction on biomass trade LINK accessed 22/06/2022
  • Schipfer F (2017) Densification and conversion technologies for bioenergy and advanced biobased material supply chains – a European case study. Dissertation, Technical University of Vienna  LINK
  • Schipfer F, Kranzl L (2019) Techno- economic evaluation of biomass-to-end- use chains based on densified bioenergy carriers (dBECs) Applied Energy 239, 715-724 LINK
  • IEA Bioenergy (2016) Developing the Global Bioeconomy Technical, Market, and Environmental Lessons from Bioenergy LINK accessed 18/02/2022
  • IEA Bioenergy Task 40 Report (2013) Future perspectives of international bioenergy trade LINK 
  • IEA Bioenergy Task 40 (2012) Global wood chip trade for energy LINK accessed 18/02/2022
  • IEA Bioenergy Task 40 and Task 37 (2014) Biomethane Status and Factors Affecting Market Development and Trade LINK accessed 18/02/2022
  • IEA Bioenergy Task 40 (2017) Global Wood Pellet Industry and Trade Study 2017 LINK accessed 18/02/2022
  • Schipfer F, Kranzl L et al. (2020) The European wood pellets for heating market – Price developments, trade and market efficiency Energy 212,118636 LINK
  • IEA Bioenergy Task 40 (2019) Margin potential for a long-term sustainable wood pellet supply chain LINK accessed 18/02/2022
  • IEA Bioenergy Task 40 (2019) Socio- economic assessment of the pellets supply chain in the USA LINK accessed 18/02/2022
  • IEA Bioenergy Task 43 (2018) Suitable Land Slots for SRC plantations Multi Criteria Decision Analysis LINK accessed 18/02/2022
  • IEA Bioenergy Task 43 (2011) Short Rotation Eucalypt Plantations for Energy in Brazil LINK accessed 18/02/2022
  • IEA Bioenergy Task 43 (2011) Switchgrass Production in the USA LINK accessed 18/02/2022
  • IEA Bioenergy Task 43 (2013) Short Rotation Coppice with willow in New Zealand LINK accessed 18/02/2022
  • IEA Bioenergy Task 43 (2017) Mobilization of Agricultural Residues for Bioenergy and Higher Value Bio-Products: Resources, Barriers and Sustainability LINK accessed 18/02/2022
  • Hansson J, Berndes G et al. (2019) Bioenergy and grasslands – Different approaches to addressing biodiversity and their influence on biomass supply potentials. Global Change Biology Bioenergy, 11, 517-538.y LINK
  • IEA Bioenergy Task 40 (2018) Transboundary flows of woody biomass waste streams in Europe  LINK accessed 18/02/2022
  • IEA Bioenergy Task 43   LINK accessed 22/06/2022
  • IEA Bioenergy (2019) Governing sustainability in biomass supply chains for the bioeconomy – Summary and conclusions from the IEA Bioenergy workshop, Utrecht (Netherlands), 23 May LINK accessed 18/02/2022
  • FAO United Nations Food and Agriculture Organization (2017) Sustainable Wood for a Sustainable World (SW4SW). Available at: LINK accessed 18/02/2022
  • Stupak I, Tattersall Smith C et al. (2021) Governing sustainability of bioenergy, biomaterial and bioproduct supply chains from forest and agricultural landscapes. Energy, Sustainability and Society 11,12. LINK
  • Hansen AC, Clarke N et al. (2021) Managing sustainability risks of bioenergy in four Nordic countries. Energy, Sustainability and Society 11,20. LINK
  • Kittler B, Stupak I et al. (2020) Assessing the wood sourcing practices of the U.S. industrial wood pellet industry supplying European energy demand. Energy, Sustainability and Society 10:23. LINK
  • Iriarte L, Fritsche UR (2021) Sustainability governance of bioenergy and the broader bioeconomy LINK  accessed 18/02/2022
  • Cowie A, Berndes G et al. (2021). Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy. Global Change Biology-Bioenergy. 13,1210–1231 LINK
  • UNECE United Nations Economic Commission for Europe. 2016: Chapter 2, Policies Shaping Forest Products Markets, In: UNECE/FAO Forest Products Annual Market Review, 2015-2016, Geneva Timber and Forest Study Paper 40, ECE/TIM/SP/40. United Nations, New York and Geneva 2016, United Nations Publications, ISBN 978-92-1-117115-0, pp.11-20.  LINK accessed 18/02/2022
  • Kraxner F, Schepaschenko D, et al. (2017). Mapping certified forests for sustainable management – A global tool for information improvement through participatory and collaborative mapping. Forest Policy and Economics 83,10-18 LINK
  • SBP Sustainable Biomass Program (2021) Facts and Figures, LINK accessed 18/02/2022
  • Mai-Moulin T, Fritsche UR, Junginger M (2019) Charting global position and vision of stakeholders towards sustainable bioenergy. Energy, Sustainability and Society 9:48. LINK
  • IEA (2021) Net Zero by 2050 -, A Roadmap for the Global Energy Sector LINK accessed 18/02/2022
  • IEA (2017) Technology Roadmap – Delivering Sustainable Bioenergy LINK accessed 18/02/2022
  • IEA (2017) Energy Technology Perspectives 2017 – Catalysing Energy Technology Transformations LINK accessed 18/02/2022
  • GBEP Global Bioenergy Partnership (2011)The global bioenergy partnership sustainability indicators for bioenergy- first edition LINK accessed 18/02/2022
  • IEA (2017) Energy Technology Perspectives 2017 – Catalysing Energy Technology Transformations LINK accessed 18/02/2022
  • IEA Report Extract (2020) Making the transition to clean energy LINK 
  • IEA (2017) Technology Roadmap Delivering Sustainable Bioenergy LINK  accessed 18/02/2022
  • REN 21 Renewables Now (2020) Renewables 2020 global status report, Chapter 2, Policy Landscape LINK  accessed 18/02/2022
  • REN 21 Renewables Now (2020) Renewables 2020 global status report LINK
  • IEA Bioenergy Task 39 (2022 Implementation Agendas: Compare- and-Contrast Transport Biofuels Policies (2019-2021 Update) LINK accessed 22/06/2022

07 - Biomass combustion

  • QM Biomass District Heating Plants LINK accessed 18/02/2022
  • IEA Bioenergy Task 32 (2018) Bioenergy for heat – the Hot Cases, strategic study on renewable heat LINK accessed 18/02/2022
  • IEA Bioenergy (2020) Bioenergy for High Temperature Heat in Industry – Case Study 1: Wood chips combustion for process steam in a potato processing industry LINK accessed 18/02/2022
  • IEA Bioenergy (2020) Bioenergy for High Temperature Heat in Industry – Case Study 5: Combustion of wood chips and grain residues for process heat supply in the largest bakery in Switzerland (2021) LINK accessed 22/06/2022
  • IEA Bioenergy Task 32 (2019) Best practice report on decentralized biomass fired CHP plants and status of biomass fired small- and micro scale CHP technologies.LINK
  • IEA Bioenergy (2018) Biomass pre- treatment for bioenergy Case study 4: The steam explosion process technologyLINK accessed 22/06/2022
  • IEA Bioenergy (2019) Fuel treatment of biomass residues in the supply chain for thermal conversion LINK accessed 18/02/2022
  • IEA Bioenergy Task 32 (2016) The status of large scale biomass firing The milling and combustion of biomass materials in large pulverised coal boilers LINK accessed 22/06/2022
  • European Commission (2015) Science and Policy Reports, Solid and gaseous bioenergy pathways: input values and GHG emissionsLINK accessed 18/02/2022
  • IEA Bioenergy, Deployment of bio-CCS: case studiesLINK accessed 22/06/2022
  • European Union First call for large-scale projects list of proposals pre-selected for a grantLINK accessed 18/02/2022
  • IEA Bioenergy Task 32 (2017) Aerosols from Biomass CombustionLINK accessed 18/02/2022
  • Kost C, Fraunhofer ISE (2021) Study: Levelized Cost of Electricity- Renewable Energy TechnologiesLINK accessed 18/02/2022
  • IRENA (2021) Report International Renewable Energy Agency “Renewable Power Generation Costs in 2020”LINK accessed 18/02/2022
  • IEA Bioenergy Task 32 (2019) Bioenergy The future role of Thermal Biomass Power in renewable energy systems- study of GermanyLINK

08 - Gasification for multiple purposes

  • Rosendahl L. (2013). Biomass combustion science, technology and engineering. Elsevier. LINK
  • IEA Bioenergy Task 33 (2021) Gasification applications in existing infrastructures for production of sustainable value-added products.  LINK accessed 18/02/2022
  • IEA Bioenergy Task 33, LINK accessed 18/02/2022
  • IEA Bioenergy Task 33 (2020) Emerging Gasification Technologies for Waste & Biomass LINK accessed 22/06/2022
  • Zhou Y, Swidler D, et al. (2021) Life-Cycle Greenhouse Gas emissions of biomethane and hydrogen pathways in the European Union. White paper. International Council on Clean Transportation. LINK accessed 22/06/2022
  • Technische Universität Wien, Institut für Verfahrenstechnik, Umwelttechnik & Technische Biowissenschaften (2020) Reallabor zur Herstellung von Holzdiesel und Holzgas aus Biomasse und biogenen Reststoffen für die Land- und Forstwirtschaft, LINK accessed 22/06/2022
  • IEA Bioenergy Task 33 (2018) Gasification for waste for energy carriers. A review. LINK
  • IEA Bioenergy Task 33, LINK accessed 22/06/2022
  • Technische Universität Wien, Institut  für Verfahrenstechnik, Umwelttechnik & Technische Biowissenschaften (2020) Reallabor zur Herstellung von Holzdiesel und Holzgas aus Biomasse und biogenen Reststoffen für die Land- und Forstwirtschaft,  LINK accessed 18/02/2022
  • Fuchs J, Schmid J et al. (2019) Dual fluidized bed gasification of biomass with selective carbon dioxide removal and limestone as bed material: A review. Renewable and Sustainable Energy Reviews, 107, 212-231. LINK
  • Fuchs, J., Schmid, J. C et al. (2020) The impact of gasification temperature on the process characteristics of sorption enhanced reforming of biomass. Biomass Conversion and Biorefinery, 10(4), 925- 936 LINK

09 - Direct thermochemical liquefaction

  • IEA Bioenergy Task 34 LINK accessed 18/02/2022
  • IEA Bioenergy Task 34 LINK accessed 18/02/2022
  • IEA Bioenergy Task 34 LINK accessed 18/02/2022
  • IEA Bioenergy Task 34 (2020) Commercial status of direct thermochemical liquefaction technologies LINK accessed 18/02/2022
  • IEA Bioenergy Task 34 LINK accessed 18/02/2022
  • IEA Bioenergy Task 34 LINK accessed 18/02/2022
  • IEA Bioenergy (2020) Bioenergy for High Temperature Heat in Industry – Case Study 3: Process steam in a dairy factory via fast pyrolysis bio-oil LINK accessed 18/02/2022
  • IEA Bioenergy Task 34 (2021) Polar and non-polar components in Fast Pyrolysis Bio-Oil in relation to REACH registration LINK accessed 18/02/2022
  • IEA Bioenergy Task 34 LINK accessed 18/02/2022
  • IEA Bioenergy Task 34 (2021) Biobased gasoline from sawdust via pyrolysis oil and refinery upgrading LINK accessed 22/06/2022
  • NREL National Renewable Energy Laboratory (2015) Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors LINK accessed 18/02/2022
  • IEA Bioenergy (2020) Bioenergy for High Temperature Heat in Industry – Case Study 3: Process steam in a dairy factory via fast pyrolysis bio-oil LINK accessed 18/02/2022
  • IEA Bioenergy Task 34 LINK accessed 18/02/2022
  • IEA Bioenergy Task 34: Round Robin archive LINK accessed 18/02/2022
  • IEA Bioenergy Task 34 (2021) Polar and non-polar components in Fast Pyrolysis Bio-Oil in relation to REACH registration LINK
  • IEA Bioenergy (2020) Bioenergy for High Temperature Heat in Industry Case Study 3: Process steam in a dairy factory via fast pyrolysis bio-oil LINK accessed 18/02/2022

10 - Biogas production for heat, electricity, renewable gas, and transport

  • IEA Bioenergy Task 37 (2009) Biogas upgrading technologies – developments and innovations” LINK accessed 18/02/2022
  • IEA Bioenergy Task 37 (2020). Integration of Biogas Systems into the Energy System: Technical aspects of flexible plant operation, LINK accessed 18/02/2022
  • Bischofsberger W, Dichtl N et al. Anaerobtechnik, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 396–417LINK accessed 27/06/2022
  • IEA Bioenergy Task 37 (2021) Perspectives on biomethane as a transport fuel within a circular economy, energy, and environmental systemLINK accessed 27/06/2022
  • IEA Bioenergy Task 37 (2017) Methane emissions from biogas plants – Methods for measurement, results and effect on greenhouse gas balance of electricity produced LINK accessed 18/02/2022
  • IEA Bioenergy (2020) Advanced Biofuels – Potential for Cost Reduction LINK accessed 18/02/2022
  • Montgomery L, Bochmann G (2014): Pretreatment of feedstock for enhanced biogas production , 24, IEA BioenergyLINK accessed 18/02/2022
  • Drosg B, Fuchs W et al.(2015) Nutrient Recovery by Biogas Digestate Processing, 40, IEA BioenergyLINK accessed 18/02/2022

11 - Transport biofuels

  • Horizon 2020 Work Programme 2014- 2015 – General Annexes -Annex G Technology readiness levels (TRL) LINK accessed 18/02/2022
  • IEA Bioenergy Task 39 Database on facilities for the production of advanced liquid and gaseous biofuels for transport LINK accessed 18/02/2022
  • IEA Bioenergy Task 37 (2021) Perspectives on biomethane as transport fuel within a circular economy, energy, and environmental system LINK accessed 23/06/2022
  • IRENA (2021) Innovation Outlook: Renewable Methanol LINK accessed 23/06/2022
  • IEA Bioenergy Task 39 (2021) Progress towards biofuels for marine Shipping Status and identification of barriers for utilization of advanced biofuels in the marine sector LINK accessed 18/02/2022
  • IMO International Maritime Organization (2020) Interim guidelines for the safety of ships using methyl/ethyl alcohol as fuel LINK accessed 18/02/2022
  • ATAG Air Transport Action Group LINK accessed 18/02/2022 IEA Bioenergy (2020) The Role of Renewable Transport Fuels in Decarbonizing Road Transport LINK accessed 18/02/2022
  • REN 21 Renewables Now (2020) Renewables 2020 global status report LINK accessed 18/02/2022
  • IEA Bioenergy Task 39, LINK accessed 23/06/2022
  • Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources LINK accessed 18/02/2022
  • IEA Bioenergy (2020) The Role of Renewable Transport Fuels in Decarbonizing Road Transport LINK accessed 18/02/2022
  • IEA Bioenergy Task 39 (2022) Implementation Agendas: Compare-and-Contrast Transport Biofuels Policies (2019-2021 Update)  LINK accessed 22/06/2022
  • IEA Bioenergy (2020) Advanced Biofuels – Potential for Cost Reduction LINK accessed 18/02/2022
  • IEA Technology Roadmap Biofuels for Transport (2011) LINK accessed 18/02/2022
  • IRENA International Renewable Energy Agency (2016) Outlook advanced liquid biofuels LINK accessed 18/02/2022
  • IEA (2017) Technology Roadmap Delivering Sustainable Bioenergy LINK accessed 18/02/2022
  • ETIP Bioenergy (2018) Strategic research and innovation agenda LINK accessed 18/02/2022
  • IRENA International Renewable Energy Agency (2019) ADVANCED BIOFUELS What holds them back?LINK accessed 23/06/2022
  • IEA Bioenergy (2017) State of Technology Review – Algae Bioenergy LINK accessed 23/06/2022
  • Government of Canada, What is the clean fuel standard? LINK accessed 23/06/2022
  • ICAO (2019) Resolution A40-19: Consolidated statement of continuing ICAO policies and practices related to environmental protection – Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA)  LINK accessed 23/06/2022
  • ICAO, Sustainable Aviation Fuels (SAF)  LINK accessed 23/06/2022
  • ICAO (2021) CORSIA Sustainability Criteria for CORSIA Eligible Fuels LINK accessed 23/06/2022
  • ICAO (2021) CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels LINK accessed 23/06/2022
  • European Parliament (2022) ReFuel EU Aviation initiative Sustainable aviation fuels and the fit for 55 package LINK accessed 23/06/2022
  • IMO (2020) Cutting sulphur oxide emissions, LINK accessed 23/06/2022
  • IMO (2020) Greenhouse Gas Emissions LINK accessed 23/06/2022
  • Eurepean Parliament (2022) Sustainable maritime fuels ‘Fit for 55’ package: The Fuel EU Maritime proposal LINK accessed 23/06/2022
  • IEA Bioenergy Task 39 (2022) Implementation Agendas: Compare- and-Contrast Transport Biofuels Policies (2019-2021 Update) LINK accessed 22/06/2022

12 - Biorefining

  • IEA Bioenergy Task 42 (2019) Technical, Economic and Environmental Assessment of Biorefinery Concepts: Developing a practical approach for characterisation LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 Factsheets LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 (2020) Bio-Based Chemicals: A 2020 Update LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 (2018) Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018  LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 (2016) Proteins for Food, Feed and Biobased Applications: Biorefining of protein containing biomass LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 (2021) Sustainable Lignin Valorization LINK accessed 23/06/2022
  • VDI 6310 (2016) Blatt 1 Klassifikation und Gütekriterien von Bioraffinerien LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 Biorefinery Fact Sheets LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 Factsheets LINK accessed 18/02/2022
  • IEA Bioenergy Task 42 LINK accessed 18/02/2022
  • Bozell JJ, Petersen (2010) GR Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited” Green Chemistry 4  LINK  accessed 23/06/2022
  • Patel MK, Crank M et al. (2006) Medium and Long-term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources, Utrecht University Repository LINK
  • European Bioplastics, Bioplastics market data LINK accessed 18/02/2022